IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 4, APRIL 2005 551

Energy- and Performance-Aware Mapping for
Regular NoC Architectures

Jingcao Hu, Student Member, IEEE, and Radu Marculescu, Member, IEEE

Abstract—In this paper, we present an algorithm which automat-
ically maps a given set of intellectual property onto a generic
regular network-on-chip (NoC) architecture and constructs a
deadlock-free deterministic routing function such that the total
communication energy is minimized. At the same time, the per-
formance of the resulting communication system is guaranteed to
satisfy the specified design constraints through bandwidth reser-
vation. As the main theoretical contribution, we first formulate
the problem of energy- and performance-aware mapping in a
topological sense, and show how the routing flexibility can be
exploited to expand the solution space and improve the solu-
tion quality. An efficient branch-and-bound algorithm is then
proposed to solve this problem. Experimental results show that
the proposed algorithm is very fast, and significant commu-
nication energy savings can be achieved. For instance, for a
complex video/audio application, 51.7% communication energy
savings have been observed, on average, compared to an ad hoc
implementation.

Index Terms—Energy, low power, networks-on-chip (NOCs),
optimization, performance.

1. INTRODUCTION

ITH THE advance of the semiconductor technology,
the huge number of transistors available on a single
chip allows designers to integrate tens of intellectual property
(IP) blocks together with large amounts of embedded memory.
These IPs can be CPU or DSP cores, video stream processors,
high-bandwidth input/outputs (I/O) devices, etc. The richness
of the computational resources places tremendous demands
on the communication resources as well. Additionally, the
shrinking feature size in the deep submicron (DSM) era pushes
interconnection delay and power consumption as the domi-
nant factors in the optimization of modern systems. Another
consequence of the DSM effects is the difficulty in optimizing
interconnections because of the ensued worsening effects such
as crosstalk, electromagnetic interference (EMI), etc.
Regular tile-based network-on-chip (NoC) architecture was
recently proposed to mitigate these complex on-chip communi-

Manuscript received June 25, 2003; revised December 25, 2003 and March
26, 2004. This work was supported in part by the National Science Foundation
under CAREER Award CCR-0093104, in part by DARPA/Marco Gigascale Re-
search Center (GSRC), and in part by the Semiconductor Research Corporation
under Award 2001-HJ-898. Parts of this paper appeared as “Energy-Aware Map-
ping for Til-Cabes NoC Architectures Under Performance Constraints,” in the
Proceedings of the ASP-DAC, Kitakyushu, Japan, 2003, pp. 233-239, and as
“Exploiting the Routing Flexibility for Energy/Performance Aware Mapping of
Regular NoC Architectures,” in the Proceedings of the Design, Automation, and
Test in Europe Conference, Munich, Germany, 2003, pp. 688-693. This paper
was recommended by Associate Editor M. Pedram.

The authors are with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA (e-mail:
jingcao@ece.cmu.edu; radum@ece.cmu.edu).

Digital Object Identifier 10.1109/TCAD.2005.844106

cation problems [1], [4], [5]. As shown in the left side of Fig. 1,
such a chip consists of a grid of regular tiles where each tile can
be a general-purpose processor, a DSP, a memory subsystem,
etc. A router is embedded within each tile with the objective of
connecting it to its neighboring tiles. Thus, instead of routing
design-specific global on-chip wires, the intertile communica-
tion can be achieved by routing packets.

Three key concepts come together to make this tile-based
architecture very promising: 1) structured network wiring;
2) modularity; and 3) standard interfaces. More precisely, since
the network wires are structured and wired beforehand, their
electrical parameters can be very well controlled and optimized.
In turn, these controlled electrical parameters make it possible
to use aggressively signaling circuits that help reduce the power
dissipation and propagation delay significantly. Modularity and
standard network interfaces facilitate reusability and interoper-
ability of the modules. Moreover, since the network platform
can be designed in advance and later reused directly with many
applications, it makes sense to highly optimize this platform
as its development cost can be easily amortized across many
applications.

On the other hand, the regular tile-based architecture may
lead to significant area overhead if applied to applications whose
IPs’ sizes vary significantly. In order to achieve the best perfor-
mance/cost tradeoff, the designer needs to select the right NoC
platform (e.g., the platform with the right size of tiles, routing
strategies, buffer sizes, etc.) and further customize it according
to the characteristics of the application under design. For most
applications, the area cost overhead is fully compensated by
the design time savings and performance gains because of the
regular NoC architecture. The advantages of using the regular
NoC approach can be further increased if the IPs in the library
are developed with regularity (in terms of size) taken into con-
sideration as well. Moreover, partitioning the application with
regularity in mind can also help in reducing the cost overhead.
Finally, the region-based design [5] can be used to further re-
duce the area overhead by embedding irregular regions inside
the NoC, which can be insulated from the network.

From the design perspective, given a target application de-
scribed as a set of concurrent tasks which have been assigned
and scheduled, to exploit the architecture in Fig. 1, two funda-
mental questions need to be answered: 1) to which tile each IP
should be mapped and 2) which routing algorithm is suitable
for directing the information among tiles, such that the met-
rics of interest are optimized. More precisely, in order to get
the best energy/performance tradeoff, the designer needs to de-
termine the topological placement of these IPs onto different
tiles. Referring to Fig. 1, this means to determine, for instance,
onto which tile (e.g., t13, t7, etc.) each IP (e.g., DSP2, DSP3,
etc.) should be placed. Since there may exist multiple minimal

0278-0070/$20.00 © 2005 IEEE

552 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 4, APRIL 2005

‘l'
_ 112 || t1pATREI4. I pi5
Tile :
e || o y "
Network ATl .
i X O
Logic || 14 || 5 || Ay
t0 1 t2 i3

Tile-based Architecture

Fig. 1.

routing paths, one also needs to select one qualified path for
each communicating pair of tiles. For example, one has to de-
termine which path (e.g., t13 — t9 — t19 — tg¢ — ty or
t13 — t14 — t15 — t11 — 17, etc.) should the packets follow
in order to send data from DSP2 to DSP3, if these two IPs are
meant to be placed to tiles ¢13 and 7, respectively.

While task assignment and scheduling problems have been
addressed before [2], the mapping and routing problems de-
scribed above represent a new challenge, especially in the
context of the regular tile-based NoC architecture, as this
significantly impacts the energy and performance metrics of the
system. In this paper, we address this very issue and propose
an efficient algorithm to solve it. To this end, we first propose a
suitable routing scheme (Section III) and a new energy model
(Section IV) for NoCs. The problem of mapping and routing
path allocation are formulated in Section V. Next, an efficient
branch-and-bound algorithm is proposed to solve this problem
under performance constraints in Section VI. Experimental
results in Section VII show that significant communication en-
ergy savings can be achieved, while guaranteeing the specified
system performance. For instance, for a complex video/audio
application, on average, 51.7% communication energy sav-
ings have been observed compared to a randomly generated
implementation.

II. RELATED WORK

In [1], Dally et al. suggest using the on-chip interconnection
networks instead of ad hoc global wiring to structure the top-
level wires on a chip and facilitate truly modular design. Along
the same lines, Hemani ef al. [4] present a honeycomb structure
in which each processing core (resource) is located on a regular
hexagonal node connected to three switches. In [5], Kumar ez al.
describe a NoC architecture implemented by a two-dimensional
(2-D) mesh of switches and resources.

While these papers discuss the overall advantages and chal-
lenges of the regular NoC architecture, to the best of our
knowledge, our work is the first to address the mapping and
routing path allocation problems for tile-based architectures
and provide an efficient way to solve them. Although routing
(especially wormhole-based routing [3]) has been a hot re-
search topic in the area of direct networks for parallel and
distributed systems [6]—-[8], the specifics of NoC design force
us to rethink the standard network techniques and adapt them
to the context of NoC architectures. In what follows, we ad-
dress this issue by presenting a suitable routing technique for

Communication Task Graph

Tile-based architecture and the illustration of the mapping/routing problems.

NoCs together with an algorithm for automatic generation of
the routing function.

III. PROPOSED ROUTING SCHEME FOR NoCSs

In the following, we describe the major differences be-
tween macronetworks and NoCs and implications of adapting
macronetwork routing techniques to the context of NoCs.

A. Buffering Space

To minimize the implementation cost, the on-chip network
has to be implemented with little area overhead. This is espe-
cially critical for architectures consisting of tiles with fine-level
granularity. Thus, instead of using huge memories (e.g., SRAM
or DRAM) as buffering space for the routers/switches in the
macronetwork, it is more reasonable to use small registers for
on-chip routers. Another advantage of using registers over large
memories is that the address decoding/encoding latency and the
access latency can be significantly reduced. This is critical for
those latency sensitive applications which are typical for many
SoCs.

B. Wormhole Routing

Because of the limited buffering resources available and the
stringent latency requirements for typical NoC applications, we
believe that wormhole-based routing [3] is the most appropriate
routing technique for NoCs. In wormhole routing, a packet is
divided into flow control digits (flits). The flits are then routed
through the network in a pipelined fashion, which leads to dra-
matically reduced communication latencies. The header flitin a
packet contains all the routing information and leads the packet
through the network. When the header flit is blocked due to con-
gestion in the network, all of the trailing flits need to wait at their
current nodes. Thus, large packet buffers at each intermediate
node are obviated and only small buffers are required.

C. Deterministic Routing

There are quite a few wormhole-routing techniques published
to date. In general, they can be classified into two categories:
1) deterministic and 2) adaptive [6]. We believe that for NoCs,
deterministic routing is more suitable for the following reasons.

. Resource limitation and stringent latency require-
ments. Compared to deterministic routers, imple-
menting adaptive routers requires by far more
resources. Moreover, since in adaptive routing the

HU AND MARCULESCU: ENERGY- AND PERFORMANCE-AWARE MAPPING FOR REGULAR NoC ARCHITECTURES 553

L=
tla
c
One T sl
tile N\ % 2k
Wegt- East
P . Input [buer | Crossbar - Input
O%eSSINY| Router|| «—Mest | Switch et
Core Output Output
o e
3 2 Routing
-
@ table

Fig. 2. Typical structure of a tile and the on-chip router.

packets may arrive out of order, huge buffering
space is needed to reorder them. Together with the
protocol overhead, this may lead to prohibitive costs,
extra delay, and jitter.

. Traffic predictability. In contrast to typical macronet-
works which represent general platforms for a large
spectrum of applications, most NoCs are developed for
one small set of applications. Consequently, the de-
signer has a good understanding of the traffic charac-
teristics and can avoid congestion by wisely mapping
the IPs and allocating the routing paths.

D. Freedom of Deadlock and Livelock

A desirable feature of a routing algorithm is its freedom from
deadlock and livelock [7]. All deterministic routing algorithms
are livelock-free. Freedom from deadlock is especially critical
for NoCs. Indeed, implementing a mechanism which automati-
cally detects and recovers from deadlock may not be affordable
in terms of silicon resources; it also may lead to unpredictable
delays.

E. Programmability

Since the traffic characteristics vary significantly across dif-
ferent applications, it is necessary to reallocate the routing paths
when the NoC platform is used for different applications. Since
reallocation only involves reprogramming the routing table for
each router, the cost of the programmability is almost negligible.

In summary, we argue that the appropriate routing technique
for NoCs should be deterministic, deadlock-free, and minimal,!
wormhole-based. Moreover, traffic characteristics should be
considered when allocating the routing paths.

IV. PLATFORM DESCRIPTION

In this section, we describe the regular tile-based architecture
and the energy model for its communication network.

IMinimal refers to routing packets along the shortest paths.

A. Architecture

The system under consideration is composed of n. X n tiles
interconnected by a 2-D mesh network (see Fig. 2). Each tile
in Fig. 2 is composed of a processing core and a router. The
router is connected to the four neighboring tiles and its local
processing core via channels [each consisting of two one-direc-
tional point-to-point links].

Due to limited resources, the buffers are implemented using
registers, typically in the size of one or two flits each. A5 x 5
crossbar switch is used as the switching fabric in the router.

Each router has a routing table. Based on the source/desti-
nation address, the routing table decides which output link the
packet should be delivered to.

B. Energy Model

Ye et al. [9] proposed a model for energy consumption of
network routers. The bit energy (Fy;) metric is defined as the
energy consumed when one bit of data is transported through
the router

By = ESbn + Ean + E"’Vbn ey

where Eg, ., Ep,,, and Ey,, represent the energy consumed
by the switch, buffering and interconnection wires inside the
switching fabric, respectively. Since Eyy,,, is the energy con-
sumed on the wires inside the switch fabric, the energy con-
sumed on the links between tiles (Ep,,) should also be in-
cluded. Thus, the average energy consumed in sending one bit
of data from a tile to a neighboring tile can be calculated as

Evie = Es,,, + EB,;, + Ewy,, + EL,, - (2)

Since the length of a link is typically in the order of mil-
limeters, the energy consumed by buffering (E'g, ,) and internal
wires (Ew,,,) is negligible? compared to Er,,, ; (2) reduces to

By = ESbit + ELbit' 3

2We evaluated the energy consumption using Spice simulations for a 0.35-m
technology. The results show that Ep, .. = 0.073 pJ, which is indeed negligible
compared to 'z . (typically in the order of a few pl).

554 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 4, APRIL 2005

This is a very nice approximation since it eliminates the Ep, ,,
which is a parameter tightly coupled with network congestion
for which an accurate value can only be measured by time-con-
suming simulations. Consequently, in the new model, the av-
erage energy consumption for sending one bit of data from tile
t; to tile tj is

Ef)zl‘;t] = Mhops X Esbit + (nhOpS - 1) X ELbit “)
where ny,,ps 1s the number of routers the bit traverses from tile
t; to tile t]’.

It is interesting to note that, with (4), the communication
energy consumption can now be analytically calculated inde-
pendently of the underlying traffic model (e.g., Markovian,
long-range dependence, etc. [12]), provided that the communi-
cation volume between any communicating IP pair is known.
For 2-D mesh networks with minimal routing, (4) shows that
the average energy consumption of sending one bit of data
from ¢; to t; is determined by the Manhattan distance between
them.

V. PROBLEM OF ENERGY- AND PERFORMANCE-AWARE
MAPPING AND ROUTING PATH ALLOCATION

A. Problem Formulation

Simply stated, for a given application, our objective is to
decide on which tile should each IP be mapped to and how
should the packets be routed, such that the total communica-
tion energy consumption is minimized under given performance
constraints. To formulate this problem, we need the following
definitions.

Definition 1: An application characterization graph (APCG)
G = G(C, A) is a directed graph, where each vertex ¢; repre-
sents one selected IP, and each directed arc a; ; characterizes
the communication from ¢; to ¢;.3 Each a; ; has the following
properties:

. v(a; ;) is the arc volume from vertex ¢; to ¢;, which
stands for the communication volume (bits) from ¢; to
Cj.

. b(a; ;) is the arc bandwidth requirement from vertex c;

to ¢;, which stands for the minimum bandwidth (bits
per second) that should be allocated by the network in
order to meet the performance constraints.

Definition 2: An architecture characterization graph
(ARCG) ¢ = G(T,R) is a directed graph, where each
vertex t; represents one tile in the architecture, and each di-
rected arc r; ; represents the routing parameter from ¢; to ¢;.
Each r; ; has the following properties:

. P; ; is the a set of candidate minimal paths from tile
t; totile ¢;. Vp; ; € P; j, L(p; ;) gives the set of links
used by p; ;.

. e(r; j) is arc cost. This represents the average energy

consumption (Joules) of sending one bit of data from
t; to t]', i.e., Elt;l;tj

3The communication from ¢; to ¢; is represented as a; ;. There can be at
most two directional arcs between any vertex pair, with one arc dedicated to
each direction.

Definition 3: For an ARCG G’ = G(T, R), a deterministic
routing function R : R — P maps r; ; to one routing path p; ;,
where p; ; € P; ;.

Using these definitions, the problem of energy/performance
aware mapping and routing path allocation under performance
constraints can be formulated as follows.

Given an APCG and an ARCG that satisfy

size(APCG) < size(ARCG) 3)
find a mapping function map() from APCG to ARCG and

a deterministic, deadlock-free, minimal routing function R()
which:

min { Energy = Z v(a; ;) x e (rmap(ci)’map(cj)) (6)

Vaq-_j
such that:
Ve, € C, map(c;) € T 7
Ve, # ¢ €C, map(c;) 7 map(c;) (8)
Vlk, B(lk) > Z b(ai,j) X f(llm R(Tmap(ci),map(cj-))) 9
Va;, ;

where B(ly) is the bandwidth of link [, and

_ {0, Ik & L(pmn)
fls pmn) = { 1, l: € L(pmn)

To give a little bit of intuition, conditions (7) and (8) mean that
each IP should be mapped to exactly one tile and no tile can host
more than one IP. Equation (9) specifies the communication per-
formance constraints for the problem in terms of the aggregated
bandwidth requirements for each link. More precisely, the re-
sulting network has to guarantee that the communication traffic
(workload) of any link does not exceed the available bandwidth,
such that the bandwidth requirements between each communi-
cating IP pair can be satisfied.

We need to note that although latency is another very im-
portant performance metric, it is also a very difficult metric to
evaluate, especially since the characterization of the traffic it-
self is difficult for most applications. Moreover, the accurate
latency estimation may depend on many other factors, such as
packet/flit size, router’s arbitration scheme, etc. Thus, similar
to other work in the literature (e.g., [13]), we use the bandwidth
requirement as a performance constraint. Another advantage is
that the bandwidth requirement is actually indirectly related to
the packet latency. For instance, the designer can calculate the
bound of packet latency with the specified bandwidth using the
techniques presented in [14].

Having this problem formulation, the network to be synthe-
sized guarantees that the packets from the same source IP to the
same destination IP will always arrive in order, as the resulting
network is indeed deterministic. As shown in Definition 3, a de-
terministic routing function maps r; ; to one routing path p; ;,
where p; ; € P; ;. This means that given a source IP ¢; and a
destination IP c;, the algorithm decides only one routing path
for all packets sent from ¢; to ¢;. Thus, the packets that belong

HU AND MARCULESCU: ENERGY- AND PERFORMANCE-AWARE MAPPING FOR REGULAR NoC ARCHITECTURES 555

4.5 r T T
=@= Random_min/SA_sol
4 || == Random_med/SA_sol

o
S35
c
i)
8 3l i
= 3
=]
%)
& 25¢
o
3
o 2t _
c
L

1.5¢ E

1 ! L L
0 50 100 150 200
Number of tiles
Fig. 3. Impact of mapping on energy consumption.

to the same message will never arrive out of order since they
have the same source and destination.

B. Significance of the Problem

To prove that the choice of mapping heavily affects the
communication energy consumption, we consider the following
experiment. A series of task graphs are generated using the
TGFF package [10]. Then the output graph is randomly assigned
to a given number of IPs, with the computational times and
communication volumes randomly generated according to a
specified distribution. Our tool is then used to preprocess and
annotate these task graphs and build the communication task
graphs (CTGs), which characterize the application partitioning,
task assignment, scheduling, communication patterns, and task
execution time. Also, the bandwidth requirements between any
communicating IP pairs are calculated.

The number of IPs used in the experiment ranges from 3 X
3 to 13 x 13. For each benchmark, we generate 3000 random
mapping configurations and the corresponding energy con-
sumption values are calculated. At the same time, an optimizer
based on simulated annealing (SA) was also developed and used
with the goal of finding the legal mapping which consumes the
least amount of communication energy. The resulting energy
ratios are plotted in Fig. 3.

The dashed line in Fig. 3 shows the energy consumption ratio
between the best solution among the 3000 random mappings
(Random_min) and the solution found by the SA (SA_sol). The
solid line shows the ratio between the median solution among
the 3000 random mappings (Random_med) and SA_sol.

As we can see, although the SA optimizer does not neces-
sarily find the optimal solution, it still saves around 50% energy
compared to the median solution for the system consisting of
3 x 3 tiles. Moreover, the savings increase as the system size
scales up. For instance, for the system with 13 x 13 tiles, the
savings can be as high as 75%. Another observation is that the
best solution among the 3000 random mappings is far from sat-
isfactory, even for a system as small as 3 x 3 tiles.

From the routing perspective, it is not unusual to apply XY
routing to this kind of systems since minimal, deterministic, and

Root ~—Fxxxy] Internal
Node Node
PAT
[Oxxx] [Ixxx [2xxx] [3xxX¥ 12->312—>3
73 =>2:3->2
PAT
[01xx] [02xx] [03xx] [20xx] [21xx] [23xX] 3-237-33
= .
..... o 1->2:1->0-
Leaf i I 20 2 N
Node 0312] [0321 2301] [2310] Lo

Fig. 4. Example search tree.

deadlock-free routing is needed. Although it eliminates the com-
plexity in routing path allocation, the restriction to XY routing
shrinks the solution space when performance constraints are
specified, as the flexibility in choosing suitable routing paths is
obviously sacrificed. This will be demonstrated by our experi-
mental results as shown in Section VIL

Therefore, mapping and routing path allocation are critical
to designing a system which consumes the least amount of
energy while satisfying the specified performance constraints.
Unfortunately, neither of these problems is simple. The map-
ping problem by itself is an instance of constrained quadratic
assignment problem which is NP-hard [11]. The search space
of the problem increases factorially with the system size. Even
for a system with 4 X 4 tiles, there can be 16! mappings which
are already impossible to enumerate, not to mention systems
with 10 x 10 tiles that are anticipated in five years or so [5].
Moreover, the routing path allocation is also computationally
unaffordable if we have to enumerate all the combinations
of routing path allocations while guaranteeing freedom from
deadlock.

In the following section, we propose an efficient heuristic
which is able to find nearly optimal solutions in reasonable run
times.

VI. ENERGY- AND PERFORMANCE-AWARE MAPPING
AND ROUTING PATH ALLOCATION

A. Data Structure

Our approach is based on a branch-and-bound algorithm
which efficiently walks through the searching tree that repre-
sents the solution space. Fig. 4 shows a searching tree example
for mapping a four-IP application onto a 2 x 2-tile architecture.

Each node in the tree is either a root node, an internal node,
or a leaf node. The root node (labeled “xxxx”) corresponds to the
state where no IP has been mapped and no routing path has been
allocated. Each internal node represents a partial mapping. For
example, the node labeled “23xx” represents a partial mapping
where I Py and IP; are mapped to tile ¢, and tile 3, respec-
tively, while I P, and I P; are not mapped yet. Each leaf node
represents a complete mapping of the IPs to the tiles. Each node
also has a path allocation table (PAT) which stores the routing
paths for the traffic among its occupied tiles. For instance, the
PAT of node “231x” in Fig. 4 shows that the traffic from ¢; to
to takes the path 1 — t9 — to, etc. Similarly, the PAT of any
other node is automatically generated by the algorithm. When a
child node is generated, the PAT of its parent node is automati-
cally inherited. Next, the routing paths for the traffic involving

556 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 4, APRIL 2005

the newly occupied tile are allocated and added to its PAT. Cau-
tion must be taken to ensure freedom of deadlock.

To further explain how our algorithm works, the following
definitions are needed.

Definition 4: The cost of a node is the total energy consumed
by the communication among all IPs that have already been
mapped.

Definition 5: Let M be the set of vertices in the APCG that
have already have been mapped. A node is called a legal node
if and only if it satisfies the following two conditions.

. The routing paths specified by the PAT are deadlock
free.

* B(ly) > D Va;jeic;em Dlaig) X
f(lk7pmap(c7-),map(cj-))’ Vi, where Pmap(c;),map(c;)
is the routing path from tile map(c;) to map(c;)
specified by the PAT.

Definition 6: The upper bound cost (UBC) of a node is de-
fined as a value that is no less than the minimum cost of its legal,
descendant leaf nodes.

Obviously, based on this definition, if a node has a UBC cost
of x, then it has at least one legal descendant leaf node whose
cost is no larger than x.

Definition 7: The lower bound cost (LBC) of a node is de-
fined as the lowest cost that its descendant leaf nodes can pos-
sibly achieve.

Differently stated, this means that if a node has the LBC equal
to x, then each of its descendant leaf nodes has at least a cost
of x.

B. Branch-and-Bound Algorithm

Given the above definitions, finding the optimal solution of
(6) is equivalent to finding the legal leaf node which has the
minimal cost. To achieve this, our algorithm searches the op-
timal solution by alternating the following two steps.

Branch: In this step, an unexpanded node is selected and its
next unmapped IP is enumeratively assigned to the remaining
unoccupied tiles to generate the corresponding new child nodes.
The PAT of each child node is also generated by first copying its
parent node’s PAT and then allocating the routing paths for the
traffic between the newly occupied tile and the other occupied
tiles. The routing paths specified by the PAT have to be dead-
lock-free.

Bound: Each of the newly generated child nodes is inspected
to see if it is possible to generate the best leaf nodes later. A node
can be trimmed away without further expansion if either its cost
or its LBC is higher than the lowest UBC that has been found so
far, since it is guaranteed that other nodes will eventually lead
to a better solution.

How the algorithm allocates the routing paths and computes
UBC/LBC are critical to its performance. Better routing path
allocation helps balancing the traffic which leads to better so-
lutions, but needs more time to compute. Tight UBC and LBC
help in trimming away more nonpromising nodes early in the
search, but also demand more computational time.

Next, we describe our routing path allocation heuristic which
can find a good routing path allocation within reasonably short

computational times. We also show our method for computing
UBC and LBC, which offers a satisfactory tradeoff between
the average computation time for processing one node and the
number of nodes that need to be processed.

Step 1: Routing Path Allocation: Routing path allocation has
two objectives. First, all the routing paths have to be minimal and
the resulting network has to be deadlock-free. Second, it needs
to balance the traffic across all the available links so that no link
will be overloaded.

To be deadlock free, the routing algorithm needs to prohibit
at least one turn in each of the possible routing cycles. In
addition, it should not prohibit more turns than necessary to
preserve the adaptiveness. Based on this, several deadlock-free
adaptive routing algorithms have been proposed [7], including
west-first, north-last, and negative-first. In [8], Chiu proposed
the odd-even turn model which restricts the locations where
some types of turns can take place such that the algorithm
remains deadlock-free.

In our algorithm, we convert the adaptiveness offered by the
above algorithms into flexibility for the routing path allocation
by constructing the legal turn set (LTS). An LTS is composed of
and only of those turns allowed in the corresponding algorithm.
Any path to be allocated can only employ turns from the LTS.
The advantage of using LTS is twofold. First, since the turns are
restricted to LTS, deadlock-free routing is guaranteed. Second,
since only minimum turns are prohibited, the routing path allo-
cation is still highly flexible.

Theoretically, the turns allowed in any of such deadlock-free
adaptive routing algorithms can be used to construct an LTS. In
this paper, we chose the west-first and odd-even routing algo-
rithm to build our LTSs.4 In short, west-first routing prohibits
all the north — west and south — east turns, all the remaining
turns being legal. While the odd-even routing prohibits the
east — north and east — south turns at any tiles located
in an even column, it also prohibits the north — west and
south — west turns at any tiles located in an odd column.

Both of these two algorithms prohibit only 1/4 of the total
possible turns. However, the degree of the adaptiveness pro-
vided by odd-even routing is distributed more evenly than that
provided by west-first [8].

Given an LTS, the following heuristic is used to allocate
routing paths for a list of communication loads (LCL):

In Fig. 5, the communication load (CL) is first sorted by paths
flexibility. The flexibility of a CL can be 1 (if there exists more
than one legal path®) or 0, otherwise. CLs with lower flexibility
are given higher priorities for path allocation. If two CLs are tied
in flexibility, the one with the higher bandwidth requirement is
given priority. Function choose_link returns the least loaded link
allowed by LTS.

Step 2: UBC Calculation: From definition 6, the cost of any
legal descendant leaf node can be used as the UBC of that node.
Since a tight UBC cost is preferred, we choose the descendant
leaf node by greedily mapping the remaining unmapped IPs.

4North-last and negative-first routing are similar to west-first routing.
5A legal path has to be minimal and employ only those turns in the LTS.

HU AND MARCULESCU: ENERGY- AND PERFORMANCE-AWARE MAPPING FOR REGULAR NoC ARCHITECTURES 557

Sort LCL by the flexibility of each CL
for each CL in LCL {
cur_tile = CL.source; dst_tile=CL.destination
while (cur-tile # dst-tile) {
link = choose_link (cur_tile,
cur_tile = link.next_tile();
link .add-load (CL.bandwidth) ;

}

dst_tile) ;

}

Fig. 5. Pseudocode of the routing path allocation algorithm.

In each step, the next unmapped IP ¢ with the highest commu-

nication demand is selected and its ideal topological location
(z,y) on the chip is calculated as:

~ Dveen (vlan) +vlaik)) x cf
Dveren (v(ar) +v(air))
Svesenn (0(a5,0) + v(ai0)) X !
Y= S (1D
Lovesent (v(ans) + v(air))
where ¢? and ¢! represent the row id and column id of the tile
that ¢; is mapped onto, respectively, and M is the set of mapped
IPs. ¢, is then mapped to an unoccupied tile whose topological
location has the smallest Manhattan distance to (z,y).

This step is repeated until all IPs have been mapped, which
leads to a leaf node. The aforementioned heuristic is then used
to allocate routing paths for the unallocated traffic. If this leaf
node is illegal, then the UBC of the node under inspection is set
to be infinitely large; otherwise, it is set to be the cost of that
leaf node.

Step 3: LBC Calculation: The LBC cost of a node n can be
decomposed into three components

(10)

LBC = Cm,m, + C’u,,u + Cm,u- (12)

Cpm.,m is the cost of the intercommunication among mapped
IPs and can be calculated exactly. C,, ,, is the cost of the inter-
communication among the unmapped IPs and can be calculated
using (13) (M and O are the sets of unmapped IPs and unoccu-
pied tiles, respectively)

Cu,u = % X Z Z v(am) X

Ve, €EMVe;eM

13)

min _ e(rmn)
Vimtn €O

Lastly, C,, . represents the cost of the intercommunication
between the mapped IPs and the unmapped IPs. C,, ,, can be
derived by:

Con= 3 3 (0lis 0(a;0)x it (Fapge 1)

_ Vi, €O
Ve, EM e, e k€
(14)

C. Pseudocode of the Algorithm

Fig. 6 gives the pseudocode of our algorithm. Two speedup
techniques are proposed to trim away more nonpromising nodes
early in the search process.

. IP ordering. 1Ps are sorted by their communication
demands (3 _y; . {v(ai;) +v(a;;)} for IP ¢;) so that
the IPs with higher demand will be mapped earlier.
Since the positions of the IPs with higher demands

Sort the IPs by communication demand
root.node = new node (NULL)
MUBC = 400, bestmapping_cost = +oo
PQ.Insert (root.node)
while (!PQ.Empty ()) {
cur_node = PQ.Next ()
for each unoccupied tile t; {
generate child node 7Nnew
allocate routing paths
if (Nnew'’'s mirror node exists in the PQ)
continue
if (Rpew . LBC>MUBC)
continue
if (Npew.isLeafNode) {
if (Nnew.cost < best_mapping-cost) {
best_mapping.cost = Tnew.cost
best mapping = Npew

else {
if (Nnew - UBCKMUBC)
MUBC = Npew .UBC
PQ.insert (Nnew)
}
}
}

Fig. 6. Pseudocode of the mapping algorithm.

Energy ratio vs. system size Speedup ratio vs. system size

— <
& o__e__e——-o 5
21 S 100
— 3
5 o
g g
= S
© 05 5 50
> =]
S 3
o 1o}
S o
) @ 0
0 20 40 0 20 40
System size(number of tiles) System size(number of tiles)
Fig. 7. Comparison between SA and EPAM-XY for a random set of
benchmarks.

have larger impact on the overall communication en-
ergy consumption, fixing their positions earlier helps
exposing those nonpromising nodes earlier in the
searching process; this reduces the number of nodes to
be expanded. As most applications have nonuniform
traffic patterns, this heuristic is quite useful in practice.

. Priority queue (PQ). The PQ sorts the nodes to be
branched based on their cost. The lower the cost of
the node, the higher the priority it is assigned for
branching. Intuitively, expanding a node with lower
cost will likely decrease the minimum UBC so that
more nonpromising nodes can be detected.

Obviously, as the system size scales up, the runtime of the
algorithm will also increase. Fortunately, we can tradeoff the
solution quality with runtime by limiting the maximum length of
PQ. When PQ’s length reaches a threshold value, strict criteria
are applied to select the child nodes for insertion into PQ.

VII. EXPERIMENTAL RESULTS
A. Evaluation on Random Applications

We first compare the runtime and the solution quality of our
algorithm against an SA optimizer. To make the comparison fair,
SA was optimized by carefully selecting parameters such as the
number of moves per temperature, cooling schedule, etc. Since
SA optimization is restricted to XY routing, for the first set of

558

Comparison using a 36-tile application

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 4, APRIL 2005

Improvement over EPAM-XY

- 18
X
-% EPAM-XY -©- EPAM-OE
45 4 -©- EPAM-OE 16 A EPAM-WE
2 1 -A- EPAM-WF 14
c ! —
2] < 12
e i| Pt
E j € 10
2 E L 0 S A-eLl
& g 8 A o7 T A
o 3 3
5 2o o
o E 4l &
i
2
0
5 10 15 20 10 20 30 40 50 60 70
Link Capacity (100Mb/s) System size (number of tiles)

Fig. 8. Effectiveness of exploiting the routing flexibility.

experiments, we also configure our algorithm to run without ex-
ploiting the routing flexibility by fixing it to do just XY routing.
In the following, we call this version EPAM-XY which stands
for energy- and performance-aware mapping with XY routing.

Four categories (I, I1, III, and IV) of random benchmarks were
generated, each containing ten applications with 9, 16, 25, and
36 IPs, respectively. EPAM-XY and SA were then applied to
map these applications onto architectures with the same number
of tiles. The results are shown in Fig. 7.

As shown in Fig. 7, for applications with nine tiles,
EPAM-XY runs 45 times faster than SA, on average. As
the system size scales up, the speedup also increases dramat-
ically. For applications with 36 tiles, the average speedup of
EPAM-XY over SA increases to 127. Meanwhile, the solutions
produced by our algorithm remain very competitive. Indeed, the
energy consumption of the solutions generated by EPAM-XY is
only 3%, 6% and 10% larger compared to the SA solutions for
category II, III, and IV, respectively. For category I, EPAM-XY
even finds better solutions because it can walk through the
entire search tree due to the small problem size.

To evaluate the benefits of exploiting the routing flexibility,
we also applied our algorithm on benchmark applications using
different LTS configurations. The comparison between the algo-
rithms with LTSs based on XY routing (EPAM-XY), odd-even
routing (EPAM-OE), and west-first (EPAM-WF) is shown in
Fig. 8.

The left part of Fig. 8 shows how EPAM-XY, EPAM-OE,
and EPAM-WF perform for a typical 36-tile application as the
link bandwidth constraints change. The results demonstrate two
advantages of routing flexibility exploitation.

1) It helps to find solutions for architectures with a lower
link bandwidth (which implies a lower implementa-
tion cost). For example, for this application, without
exploiting the routing flexibility, the link bandwidth
has to be 526 Mb/s (or higher) in order to find a so-
lution which meets the performance constraints. By
exploiting the routing flexibility, the link bandwidth
requirement decreases to 476 Mb/s (EPAM-OE) and
500 Mb/s (EPAM-WF), respectively.

2) Given the same architecture, exploiting routing flexi-
bility leads to solutions with less energy consumption.

This benefit becomes more significant as the links’
loads reach their capacity. For instance, using the
architecture where each link can provide 526 Mb/s
bandwidth, the energy consumption of the solution
generated by EPAM-XY is 4.80 J. The energy con-
sumptions of the solutions generated by EPAM-OE
and EPAM-WEF are only 4.50 and 3.12 J, respectively,
so significant energy savings are achieved.

The right part of Fig. 8 shows how the effectiveness of routing
flexibility exploitation changes as the problem size scales up.
Let BW™®" be the minimum link bandwidth needed by the
corresponding algorithm to be able to find a solution which
meets the performance constraints. The improvement (plotted
on the y axis) is defined as (BWgs — BW™m)/BW™in,
which is a measure of how much the link bandwidth can be
relaxed by exploiting routing flexibility compared to that using
EPAM-XY. As we can see, both EPAM-OE and EPAM-WF
perform better than EPAM-XY. For applications mapped
onto 16 tiles, EPAM-OE provides 5.69% improvement over
EPAM-XY, on average. As the problem size scales up to 36
and 64 tiles, the average improvement increases to 10.51% and
16.74%, respectively.

Overall, EPAM-OE performs much better than EPAM-WE,
due to the fact that the odd-even routing provides more even
adaptiveness than the west-first routing [8].

B. Complex Video/Audio Application

To evaluate the potential of our algorithm for real applica-
tions, we applied it to a generic MultiMedia System (MMS).
MMS is an integrated video/audio system which includes an
H263 video encoder, an H263 video decoder, an MP3 audio
encoder, and an MP3 audio decoder. We first partition MMS
into 40 concurrent tasks and then assign/schedule these tasks
onto 16 selected IPs available from industry [16]. These IPs
range from DSPs, generic processors, and embedded DRAMs
to customized application specific integrated circuits (ASICs).
We then use real video and audio clips as inputs to derive the
communication patterns among these IPs. Fig. 9 shows the CTG
of this system based on the simulation results. Every link con-
necting two tasks on different IPs represents data dependency,
and is tagged with a number showing the volume of data (in

HU AND MARCULESCU: ENERGY- AND PERFORMANCE-AWARE MAPPING FOR REGULAR NoC ARCHITECTURES

Bit reservoir 2

Bit reservoir 1

ASIC1
asica| (VLE)(lterative Encodingf)}—»{ lterative Encoding2 hmETT, Decogan
%)
[l
ASIC3 emulplexing ynchronziation Multiplexin Synchronziation D §F7 IMDCT SUM
Q &) %
£
psp4 (VER pspa| (LEP em2 Bulfering Buffering
< @ - ~
%% AS] psps | (EET choAccoustic Model \9{0
)q%q;j?é‘ . So
° 57(Filter MDCT MEM3 S4 FS5
DCT IDCT IDCT ~
DSP1 S0 Fs2 g ©
N @
(02] [{e] N 3]
© & 16691 672
DSP2 2 1Q I CPUA MC ADD MC ADD
Fig. 9. Communication task graph for a complex multimedia application.
1.28 :
TABLE 1
COMPARISON OF AD HOC MAPPING VERSUS EPAM-OE -x- EPAM-XY
-6- EPAM-OE
Movie clips | Ad-hoc(mJ) | EPAM-OE(mJ) | Savings f\ A A EPAM-WF
box/hand 1369 662.4 51.6% =
akiyo/cup 1810 838.4 53.7% §1.12
man/phone 2133 1070 49.8% g
3
c
o
TABLE 1I 2
COMPARISON BETWEEN SA AND EPAM-OE %0.96 L
c
SA EPAM-OE | Improvement w
Run Time (sec) | 25.55 0.31 82.419X
Energy (mJ) | 954.9 841.0 11.9%
0.8

bytes) to be transferred between these two tasks. Each oval in
Fig. 9 represents a task.°

Applying EPAM-OE to MMS, the solution to the mapping
problem is found in less than 0.5 s CPU time. A randomly gen-
erated implementation was also developed to serve as reference.
The results are shown in Table L.

In Table I, each row represents the energy consumption of
using two movie clips as simulation inputs, with one clip for the
video/audio encoder and the other for the video/audio decoder.
Compared to the ad hoc solution, we observe 51.7% communi-
cation energy savings, on average, which demonstrates the ef-
fectiveness of our algorithm.

To compare the performance between EPAM-OE and SA,
both of them are applied to MMS for an architecture whose
link bandwidth is fixed to 333 Mb/s. The results are shown in
Table II.

As shown in Table II, our algorithm generates a better solu-
tion (about 12% less energy) with a significantly shorter runtime

6To make the figure more readable, the execution time of each task and the
associated deadline of some tasks are not shown in Fig. 9.

Link Capacity (100Mb/s)

Fig. 10. Comparison among different routing schemes using a complex
multimedia application.

(more than 82 times faster) compared to SA. We should point
out that while the time needed by SA to complete is affordable
for this system (because it has only 4 x 4 tiles), the runtime of
SA increases dramatically as the system size scales up. For in-
stance, for systems with 7 x 7 tiles, the average runtime of SA
increases to 2.2 h. For systems with 10 x 10 tiles, our algorithm
needs just a few minutes to complete while the runtime of SA
becomes prohibitive (in our experiments, SA did not finish in
40 h of CPU time).

To show how much improvement our algorithm can achieve
by exploiting the routing flexibility, we applied EPAM-XY,
EPAM-OE and EPAM-WF to the MMS (Fig. 10). As shown
in Fig. 10, EPAM-XY fails to find a solution when the link
bandwidth decreases to 324 Mb/s (point A in Fig. 10). In
contrast, both EPAM-OE and EPAM-WF can still find solution
even the link bandwidth decreases to 307 Mb/s (point B in

560 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 4, APRIL 2005

Fig. 10), thus suggesting a 5.5% improvement. Given the same
architecture whose link bandwidth is fixed to 324 Mb/s, the
energy consumption of the solutions found by EPAM-OE and
EPAM-WF are 873.6 mJ, while the energy consumption of the
EPAM-XY solution is 1207 mlJ; thus, 27.6% energy savings
are achieved. Again, this shows the advantage of exploiting the
routing flexibility.

VIII. POSSIBLE EXTENSIONS

Next, we describe two possible extensions of the current
approach which are highly relevant to future NoCs.

A. Regions With Irregular Sizes

Regular NoC architecture may suffer from serious die-area
waste when the comprising IPs of the application under design
vary significantly in terms of individual sizes. In addition, the
tile size has to fit the largest IP, thus increasing the link length
between neighboring on chip routers. This may lead to perfor-
mance degradation and energy inefficiency.

To solve this issue, region-based NoC allows the regular
NoC designs to embed irregular regions [S]. More specifically,
a region is an area inside the NoC which can be insulated from
the network. Compared to other regular tiles, a region may have
a different internal topology and communication mechanism.
Fig. 11 gives an example of such architecture in which the
shaded IP near the center occupies an area four times larger
than the other regular IPs.

The proposed mapping algorithm can be adapted to handle
applications with such irregular-sized regions. The basic idea to
deal with regions which cover two or more tiles is to modify the
corresponding APCG of the application by dividing the regions
into several smaller IPs such that each dummy IP can fit into a
single tile. Large weights need to be assigned to the arcs which
connect the dummy IPs belonging to the same region. Due to
these large weights, the mapping algorithm will then map these
dummy IPs close to each other’s proximity such that the region
required shape can be maintained when merging these dummy
IPs after the mapping process.

We want to point out, however, that the concrete implemen-
tation of such an extension is highly dependent on the structure
of the region-based architecture. However, the region-based im-
plementation is an active research topic where many questions
remain to be answered. For instance, if a region covering 3 x
3 tiles is to be used in the design, one question would be how
many routers should the region be connected to? Should there
be only one router in the center of the region [Fig. 12(a)], or
one router in each of the boundary dummy tiles [Fig. 12(b)], or
maybe a router in every dummy tiles [Fig. 12(c)]?

Obviously, the answer to such a question will have a signif-
icant impact on the mapping process; more than that, it may
even affect the routing algorithm itself. Take Fig. 12(a) for in-
stance, the routing algorithm (e.g., XY, odd-even, etc.) has to be
modified in order to be applicable to such region-based designs,
which means that a change of our routing path allocation algo-
rithm has to be made as well. To summarize, the answers to this

Region
4

'

LS
Regular size IP

Fig. 11. Example of a regular NoC containing a region.

kind of questions have to be found before a complete mapping
algorithm can be developed to support region-based designs.

Nonetheless, as an example, we describe how the proposed
mapping algorithm can be extended if the region structure as
shown in Fig. 12(c) is used. Suppose the application has a total
of 30 IPs, among them 28 IPs have a size of 1 unit long and
1 unit wide, while the remaining 2 IPs (c4 and c¢) have a size of
2 unit long and 2 unit wide. The application is to be mapped to
a 6 x 6 mesh. Fig. 13(a) shows part of its original APCG where
c4 and cg are highlighted.

In order to handle these irregular-sized regions, c4 and cg are
split into dummy IPs ¢ — ¢} and ¢ — ¢} [Fig. 13(b)], respec-
tively.” Each dummy IP will be treated as other regular-sized
IPs by the mapping algorithm (therefore it needs to be mapped
onto one tile). The thick dummy arcs connecting dummy IPs
(e.g., the arc connecting ¢ to c) are assigned with dummy arc
volumes (v(a; ;j)), which are orders of magnitude larger than
those of regular arcs. On the other hand, the bandwidth require-
ment (b(a; ;)) of those arcs are assigned to be zero, since the
dummy communication inside a region does not really consume
any on-chip network bandwidth and is used only to glue the
mapped dummy IPs together topologically.

After such modifications, the mapping algorithm can be ap-
plied to this modified APCG without any change; the dummy
IPs belonging to the same region are guaranteed to be grouped
in a square shape. To support this claim, Fig. 14 shows the map-
ping results of applying our algorithm on Fig. 13, with IP ¢4 and
c¢ mapped onto the left bottom part of the chip.

Obviously, the aforementioned technique can be extended
to regions of nonsquare shapes by appropriately deriving the
dummy arcs and assigning dummy volumes and bandwidth re-
quirements to these arcs.

B. Preplaced IPs

Sometimes, it is preferable to preplace certain IPs at fixed
locations on the chip. For instance, a designer may prefer to
preplace I/O-related IPs to the peripheral region of a chip.

Our algorithm can be easily extended to handle such a case
by premapping those IPs. More precisely, the IP ordering step
can be modified such that the preplaced IPs get mapped onto
the required tiles before the other IPs. The algorithm can then
make its mapping decision only for the remaining IPs and tiles
without any other change.

"The number of dummy IPs for a region depends on the size of the region.

HU AND MARCULESCU: ENERGY- AND PERFORMANCE-AWARE MAPPING FOR REGULAR NoC ARCHITECTURES

=

as

ular si
v

e ze IP Rigion Router

561

7

Q@ Q

O QO

Q

0000

O

M

Ny

OO0
00000
QO

00000

QO

0000

@)
O

OOOOOO
OOOIOOO

OOO00OO
OOI0IC0O

(a)

Fig. 12. Examples of possible region implementations.

Fig. 13. Example APCG for an NoC containing two regions.

C9 Cl3 C28 C17 C21 CZZ
Cl4 CZO C|2 CZ‘J ClO C26
& G Co Cig Cis Cio
G |G |G C | Cu | Cis

C24 CZS

q
7
Cy | Cx

Fig. 14. Mapping result obtained by the modified algorithm with the specified
region shape maintained.

IX. CONCLUSION AND FUTURE WORK

In this paper, we addressed the mapping and routing path
allocation problems for regular tile-based NoC architectures.
An efficient algorithm was proposed, which automatically maps
the IPs to tiles and generates a suitable deadlock-free routing
function such that the total communication energy consumption
is minimized under specified performance constraints. As sug-
gested, although we focus on the architectures interconnected
by 2-D mesh networks, our algorithm can be adapted to other

regular architectures with different network topologies. This re-
mains to be done as future work.

The presented mapping algorithm takes APCG graph as the
input, which assumes that the tasks and communication transac-
tions have already been scheduled onto a set of selected IPs. The
separation of the scheduling procedure and the mapping/routing
procedure may lead to the suboptimality of the solution. Some
of our initial work has been presented in [15] to address the
communication and task scheduling for regular NoCs. However,
more work needs to be done in order to efficiently merge the
scheduling and mapping procedures.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
anonymous reviewers for their suggestions that contributed to
improving several drafts of this paper.

REFERENCES

[1] W.J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proc. Design Automation Conf., Jun. 2001, pp.
684-689.

J. Chang and M. Pedram, “Codex-dp: co-design of communicating sys-
tems using dynamic programming,” IEEE Trans. Coputer-Aided Design
Integr. Circuits Syst., vol. 19, no. 7, pp. 732-744, Jul. 2002.

W. J. Dally and C. L. Seitz, “The torus routing chip,” J. Distributed
Comput., vol. 1, no. 3, pp. 187-196, 1986.

(2]

(3]

562

[4]
[3]
(6]
(7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 4, APRIL 2005

A. Hemani et al., “Network on a chip: An architecture for billion tran-
sistor era,” in Proc. IEEE NorChip Conf., Nov. 2000, pp. 166—173.

S. Kumar et al., “A network on chip architecture and design method-
ology,” in Proc. Symp. VLSI, Apr. 2002, pp. 105-112.

L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, no. 2, pp. 62-76, 1993.

C.J. Glass and L. M. Ni, “The turn model for adaptive routing,” in Proc.
Int. Symp. Comput. Archit. (ISCA), May 1992, pp. 278-287.

G. Chiu, “The odd-even turn model for adaptive routing,” IEEE Trans.
Parallel Distributed Syst., vol. 11, no. 7, pp. 729-738, Jul. 2000.

T. T. Ye, L. Benini, and G. De Micheli, “Analysis of power consumption
on switch fabrics in network routers,” in Proc. Design Automation Conf.,
Jun. 2002, pp. 524-529.

R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
in Proc. Int. Workshop Hardware/Software Codesign, Mar. 1998, pp.
97-101.

M. R. Garey and D. S. Johnson, “Computers and intractability: A guide
to the theory of NP-completeness,” Freeman, 1979.

G. Varatkar and R. Marculescu, “On-chip traffic modeling and synthesis
for MPEG-2 video applications,” IEEE Trans. VLSI Syst., vol. 12, no. 1,
pp. 108-119, Jan. 2004.

A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Constraint-
driven communication synthesis,” in Proc. Design Automation Conf.,
Jun. 2002, pp. 783-788.

J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet. New York: Springer—Verlag,
2001.

J. Hu and R. Marculescu, “Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints,” in Proc. Design, Automation, Test Eur, Feb. 2004, pp.
234-239.

Mentor Graphics IP Core Catalog. http://www.mentor.com/products/
ip/product_index.cfm [Online]

Conference in 2003.

Jingcao Hu (S’01) received the B.S. and M.S.
degrees in electronics engineering from Tsinghua
University, Beijing, China, in 1998 and 2000, re-
spectively. He is currently pursuing the Ph.D. degree
in electrical and computer engineering at Carnegie
Mellon University, Pittsburgh, PA.

His research focuses on design methodologies for
system on a chip with special interest on on-chip
communication and low power.

Mr. Hu received the Best Paper Award from the
Design, Automation, and Test in Europe (DATE)

Radu Marculescu (M’94) received the Ph.D. degree
in electrical engineering from the University of
Southern California, Los Angeles, in 1998.

He is currently an Associate Professor in the
Department of Electrical and Computer Engi-
neering at Carnegie Mellon University, Pittsburgh,
PA. His current research focuses on developing
design methodologies and software tools for
system-on-a-chip design, on-chip communication,
and ambient intelligence.

Prof. Marculescu is a Member of the ACM. He re-

ceived the National Science Foundation’s CAREER Award in 2001 in the area
of design automation of electronic systems, two Best Paper Awards from the
Design, Automation, and Test in Europe Conference in 2001 and 2003, and
a Best Paper Award from the Asia South Pacific Design Automation Confer-
ence in 2003. He was also awarded the Carnegie Institute of Technology’s Ladd
Research Award (2002-03) in recognition of his research, professional accom-

plishments, and potential.

	toc
	Energy- and Performance-Aware Mapping for Regular NoC Architectu
	Jingcao Hu, Student Member, IEEE, and Radu Marculescu, Member, I
	I. I NTRODUCTION

	Fig.€1. Tile-based architecture and the illustration of the mapp
	II. R ELATED W ORK
	III. P ROPOSED R OUTING S CHEME FOR NoC S
	A. Buffering Space
	B. Wormhole Routing
	C. Deterministic Routing

	Fig.€2. Typical structure of a tile and the on-chip router.
	D. Freedom of Deadlock and Livelock
	E. Programmability
	IV. P LATFORM D ESCRIPTION
	A. Architecture
	B. Energy Model

	V. P ROBLEM OF E NERGY - AND P ERFORMANCE -A WARE M APPING AND R
	A. Problem Formulation
	Definition 1: An application characterization graph (APCG) ${\ca
	Definition 2: An architecture characterization graph (ARCG) ${\c
	Definition 3: For an ARCG ${\cal G}^{\prime}=G(T, R)$, a determi

	Fig.€3. Impact of mapping on energy consumption.
	B. Significance of the Problem

	Fig.€4. Example search tree.
	VI. E NERGY - AND P ERFORMANCE -A WARE M APPING AND R OUTING P A
	A. Data Structure
	Definition 4: The cost of a node is the total energy consumed by
	Definition 5: Let ${\cal M}$ be the set of vertices in the APCG
	Definition 6: The upper bound cost (UBC) of a node is defined as
	Definition 7: The lower bound cost (LBC) of a node is defined as

	B. Branch-and-Bound Algorithm
	Step 1: Routing Path Allocation: Routing path allocation has two
	Step 2: UBC Calculation: From definition 6, the cost of any lega
	Fig.€5. Pseudocode of the routing path allocation algorithm.

	Step 3: LBC Calculation: The LBC cost of a node n can be decom

	C. Pseudocode of the Algorithm

	Fig.€6. Pseudocode of the mapping algorithm.
	Fig.€7. Comparison between SA and EPAM-XY for a random set of be
	VII. E XPERIMENTAL R ESULTS
	A. Evaluation on Random Applications

	Fig.€8. Effectiveness of exploiting the routing flexibility.
	B. Complex Video/Audio Application

	Fig.€9. Communication task graph for a complex multimedia applic
	TABLE€I C OMPARISON OF A D H OC M APPING V ERSUS EPAM-OE
	TABLE€II C OMPARISON B ETWEEN SA AND EPAM-OE
	Fig.€10. Comparison among different routing schemes using a comp
	VIII. P OSSIBLE E XTENSIONS
	A. Regions With Irregular Sizes

	Fig.€11. Example of a regular NoC containing a region.
	B. Preplaced IPs

	Fig.€12. Examples of possible region implementations.
	Fig.€13. Example APCG for an NoC containing two regions.
	Fig.€14. Mapping result obtained by the modified algorithm with
	IX. C ONCLUSION AND F UTURE W ORK
	W. J. Dally and B. Towles, Route packets, not wires: on-chip int
	J. Chang and M. Pedram, Codex-dp: co-design of communicating sys
	W. J. Dally and C. L. Seitz, The torus routing chip, J. Distribu
	A. Hemani et al., Network on a chip: An architecture for billion
	S. Kumar et al., A network on chip architecture and design metho
	L. M. Ni and P. K. McKinley, A survey of wormhole routing techni
	C. J. Glass and L. M. Ni, The turn model for adaptive routing, i
	G. Chiu, The odd-even turn model for adaptive routing, IEEE Tran
	T. T. Ye, L. Benini, and G. De Micheli, Analysis of power consum
	R. P. Dick, D. L. Rhodes, and W. Wolf, TGFF: Task graphs for fre
	M. R. Garey and D. S. Johnson, Computers and intractability: A g
	G. Varatkar and R. Marculescu, On-chip traffic modeling and synt
	A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, Cons
	J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Det
	J. Hu and R. Marculescu, Energy-aware communication and task sch

	Mentor Graphics IP Core Catalog. http://www.mentor.com/products/

